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Process in Memory

Process - a program in execution;
process execution must progress in
sequential fashion

A process includes:

program counter
registers
code
data section
stack
heap
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Process State

As a process executes, it changes state

new: The process is being created
running: Instructions are being executed
waiting: The process is waiting for some event to occur
ready: The process is waiting to be assigned to a processor
terminated: The process has finished execution
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Process Creation

Parent process create children processes, which, in turn create
other processes, forming a tree of processes
Generally, process identified and managed via a process identifier
(pid)
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Process Control Block (PCB)

Information associated with each
process

Process state

Process id

CPU scheduling information

Program counter

CPU registers

Credentials (uid, gui, ...)

Accounting information

Memory-management information

I/O status information
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Process Creation (Cont)

Parent process create children processes, which, in turn create
other processes, forming a tree of processes

Resource sharing
Parent and children share all resources
Children share subset of parents resources
Parent and child share no resources

Execution
Parent and children execute concurrently
Parent waits until children terminate

Address space
Child duplicate of parent
Child has a program loaded into it

UNIX examples
fork system call creates new process
exec system call used after a fork to replace the process memory
space with a new program

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Management 7/81



Process Concept MT Programming Process Scheduling

Process Termination

Process executes last statement and asks the operating system
to delete it (exit)

Output data from child to parent (via wait)
Process’ resources are deallocated by operating system

Parent may terminate execution of children processes (abort)

Child has exceeded allocated resources
Task assigned to child is no longer required

If parent is exiting

Some operating system do not allow child to continue if its parent
terminates ÜAll children terminated - cascading termination
Child continues Üchild’s state is reported to next available level
process in the hierarchy
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Unix Process Life Cycle
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Context Switch

When CPU switches to another process, the system must save
the state of the old process and load the saved state for the new
process via a context switch

Context of a process represented in the PCB

Context-switch time is overhead; the system does no useful work
while switching

Time dependent on hardware support
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CPU Switch From Process to Process
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Process Scheduling Queues

Job queue: Set of all processes in the system

Ready queue: Set of all processes residing in main memory,
ready and waiting to execute

Device queues: Set of processes waiting for an I/O device

Processes migrate among the various queues

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Management 12/81



Process Concept MT Programming Process Scheduling

Representation of Process Scheduling
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Scheduler

Long-term scheduler (or job scheduler) - selects which processes
should be brought into the ready queu

Long-term scheduler is invoked very infrequently (seconds, minutes)
Ü(may be slow)
The long-term scheduler controls the degree of multiprogramming

Short-term scheduler (or CPU scheduler) - selects which process
should be executed next and allocates CPU

Short-term scheduler is invoked very frequently (milliseconds)
Ü(must be fast)

Processes can be described as either:

I/O-bound process - spends more time doing I/O than
computations, many short CPU bursts
CPU-bound process - spends more time doing computations; few
very long CPU bursts
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Addition of Medium Term Scheduling
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Interprocess Communication

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes,
including sharing data

Reasons for cooperating processes:

Information sharing
Computation speed-up
Modularity

Cooperating processes need interprocess communication (IPC)

Two models of IPC

Shared memory
Message passing
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Communications Models
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Interprocess Communication Message Passing

Mechanism for processes to communicate and to synchronize
their actions

Message system - processes communicate with each other
without resorting to shared variables

IPC facility provides two operations:

send(message) - message size fixed or variable
receive(message)

If P and Q wish to communicate, they need to:

establish a communication link between them
exchange messages via send/receive

Implementation of communication link

physical (e.g., shared memory, hardware bus)
logical (e.g., logical properties)
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Link Implementation Questions

How are links established (direct or via mailbox)?

Can a link be associated with more than two processes?

Is a send/receive call blocking or non-blocking?

What is the capacity of a link (zero, bounded, unbounded)?

Is the size of a message that the link can accommodate fixed or
variable?

Is a link unidirectional or bi-directional?
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Direct Communication

Processes must name each other explicitly:

send(P, message) - send a message to process P
receive(Q, message) - receive a message from process Q

Properties of communication link

Links are established automatically
A link is associated with exactly one pair of communicating
processes
Between each pair there exists exactly one link
The link may be unidirectional, but is usually bi-directional

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Management 20/81



Process Concept MT Programming Process Scheduling

Indirect Communication

Messages are directed and received from mailboxes (= ports)

Each mailbox has a unique id
Processes can communicate only if they share a mailbox

Properties of communication link

Link established only if processes share a common mailbox
A link may be associated with many processes
Each pair of processes may share several communication links
Link may be unidirectional or bi-directional

Operations

create a new mailbox
send and receive messages through mailbox
destroy a mailbox

Primitives are defined as:

send(A, message) send a message to mailbox A
receive(A, message) receive a message from mailbox A
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Indirect Communication II

Mailbox sharing

P1, P2, and P3 share mailbox A
P1, sends; P2 and P3 receive
Who gets the message?

Solutions

Allow a link to be associated with at most two processes
Allow only one process at a time to execute a receive operation
Allow the system to select arbitrarily the receiver. Sender is notified
who the receiver was.

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Management 22/81



Process Concept MT Programming Process Scheduling

Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous

Blocking send has the sender block until the message is received
Blocking receive has the receiver block until a message is available

Non-blocking is considered asynchronous

Non-blocking send has the sender send the message and continue
Non-blocking receive has the receiver receive a valid message or null
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Buffering

Queue of messages attached to the link; implemented in one of
three ways

Zero capacity- 0 messages
Sender must wait for receiver (rendezvous)
Bounded capacity - finite length of n messages
Sender must wait if link full (see UNIX “pipe” and “named pipe”)
Unbounded capacity - infinite length
Sender never waits
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Examples of IPC Systems - POSIX Shared Memory

POSIX Shared Memory

Process first creates shared memory segment
segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);

Process wanting access to that shared memory must attach to it
shared memory = (char *) shmat(segment id, NULL, 0);

Now the process could write to the shared memory
sprintf(shared memory, "Writing to shared memory");

When done a process can detach the shared memory from its
address space
shmdt(shared memory);

Finally, a shared-memory segment can be removed from the system
shmctl(segment id, IPC RMID, NULL);
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Examples of IPC Systems - Mach, OS X

Mach communication is message based

Even system calls are messages
Each task gets two initial mailboxes at creation - Kernel and Notify
Only three system calls needed for message transfer
msg send(), msg receive(), msg rpc()

Mailboxes needed for communication, created via
port allocate()

Maximal capacity are 8 messages
Just one process is owner of the port and allowd to receive
messages (right can be transferred)
Flexible sync. options: blocking, time-out, non-blocking
Mailbox-Set allows to receive from multiple mailboxes
port status() reports the number of messages in a mailbox
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Communications in Client-Server Systems

Sockets

A socket is defined as an endpoint for communication
Concatenation of IP address and port
The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8
Communication consists between a pair of sockets

Remote Procedure Calls

Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems
Stubs client-side proxy for the actual procedure on the server
The client-side stub locates the server and marshalls the parameters
(engl. marshalling = dt. Zugbildung)
The server-side stub receives this message, unpacks the marshalled
parameters, and performs the procedure on the server

Remote Method Invocation (Java)
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Socket Communication
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Execution of RPC
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Marshalling Parameters
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Remote Method Invocation

Remote Method Invocation (RMI) is a Java mechanism similar
to RPCs

RMI allows a Java program on one machine to invoke a method
on a remote object
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Single and Multithreaded Processes

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Management 32/81



Process Concept MT Programming Process Scheduling

Benefits

Responsiveness

Resource Sharing

Economy

Scalability
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Multicore Programming

Multicore systems putting pressure on programmers, challenges
include

Dividing activities
Balance
Data splitting
Data dependency
Testing and debugging
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Multithreaded Server Architecture
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Thread Execution on Single- vs. Multi-Core Systems

Concurrent Execution on a Single-core System

Parallel Execution on a Multicore System
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User Threads

Thread management done by user-level threads library

Three primary thread libraries:

POSIX Pthreads
Win32 threads
Java threads
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Kernel Threads

Supported by the Kernel

Examples

Windows XP/Vista/W7
Linux
Solaris
Mac OS X
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Many-to-One (M x 1) Model

Many user threads mapped to single kernel thread
Examples:

Solaris Green Threads
GNU Portable Threads

Pros:

Fast thread management
operations (up 100 times)
Flexible scheduling policy
Saving of system resources
Concurrent prog. model that
can be transferred to 1x1 or
MxN without modification

Cons:

Whole process blocks if only
one user thread blocks
Profiling and debugging is
critical
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One-to-One (1 x 1)Model

Each user-level thread maps to kernel thread

Examples:

Windows XP/Vista/W7
Linux
Solaris 9 and later

Pros:

Real parallelism
Profiling and debugging is
possible

Cons:

Overhead for kernel policy
System memory intensive
(TCB, stack)
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Many-to-Many (M x N) Model

Allows many user level threads to be mapped to many kernel
threads

OS can create a “sufficient” number of kernel threads

Examples:
Solaris prior to version 9
Windows NT/2000 with the ThreadFiber package

Pros:

Flexible scheduling policy
Efficient execution
Deadlock recovery by kernel
thread creation

Cons:

Two-level scheduling
Profiling and debugging critical
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Two-Level Model

Similar to M:M, except that it allows a user thread to be bound
to kernel thread

Examples:

HP-UX
Solaris 8 and earlier
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Thread Libraries

Thread library provides programmer with API for creating and
managing threads

Two primary ways of implementing

Library entirely in user space
Kernel-level library supported by the OS

Pthreads

May be provided either as user-level or kernel-level
A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization
API specifies behavior of the thread library, implementation is up to
development of the library
Common in UNIX operating systems (Solaris, Linux, Mac OS X)
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Threading Issues I

Semantics of fork() and exec() system calls
Does fork() duplicate only the calling thread or all threads?

Thread cancellation of target thread
Asynchronous cancellation terminates the target thread immediately
Deferred cancellation allows the target thread to periodically check
if it should be cancelled

Signal Handling
Signals are used in UNIX systems to notify a process that a
particular event has occurred
A signal handler is used to process signals

Signal is generated by particular event
Signal is delivered to a process
Signal is handled

Options:
Deliver the signal to the thread to which the signal applies
Deliver the signal to every thread in the process
Deliver the signal to certain threads in the process
Assign a specific thread to receive all signals for the process
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Threading Issues II

Thread Pools
Create a number of threads in a pool where they await work
Advantages:

Usually slightly faster to service a request with an existing thread than
create a new thread
Allows the number of threads in the application(s) to be bound to the
size of the pool

Thread Specific Data
Allows each thread to have its own copy of data
Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

Scheduler Activations
Both M:M and Two-level models require communication to
maintain the appropriate number of kernel threads allocated to the
application
Scheduler activations provide upcalls - a communication mechanism
from the kernel to the thread library
This communication allows an application to maintain the correct
number of kernel threads
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Process Scheduling

Basic Concepts

Scheduling Criteria

Scheduling Policies

Multi-Processor Scheduling

OS Scheduler Examples

Scheduling Evaluation
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CPU - I/O Burst Cycle

Process execution consists of a cycle of CPU execution and I/O
wait
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CPU Burst Distribution
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The Benefit of Multiprogramming

Maximum CPU utilization obtained with multiprogramming
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CPU Scheduler

Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them

CPU scheduling decisions may take place when a process:
1 Switches from running to waiting state
2 Switches from running to ready state
3 Switches from waiting to ready
4 Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptive
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Dispatcher

Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

switching context
switching to user mode
jumping to the proper location in the user program to restart that
program

Dispatch latency - time it takes for the dispatcher to stop one
process and start another running
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Scheduling Criteria

CPU utilization - keep the CPU as busy as possible

Throughput - # of processes that complete their execution per
time unit

Turnaround time - amount of time to execute a particular
process

Waiting time - amount of time a process has been waiting in the
ready queue

Response time - amount of time it takes from when a request
was submitted until the first response is produced (for
time-sharing environment)
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Optimization Criteria

Max CPU utilization

Max throughput

Min turnaround time

Min waiting time

Min response time
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First-Come, First-Served (FCFS) Scheduling I

Example:
Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1, P2, P3

The Gantt Chart for the schedule is:

Waiting time for P1 = 0 ; P2 = 24 ; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17
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First-Come, First-Served (FCFS) Scheduling II

Example:
Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P2, P3, P1

The Gantt Chart for the schedule is:

Waiting time for P1 = 6 ; P2 = 0 ; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

Much better than previous case

Convoy effect - short process behind long process
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Shortest-Job-First (SJF) Scheduling

Associate with each process the length of its next CPU burst.
Use these lengths to schedule the process with the shortest time
SJF is optimal - gives minimum average waiting time for a given
set of processes

The difficulty is knowing the length of the next CPU request

Example:
Process Burst Time

P1 6

P2 8

P3 7

P4 3
SJF scheduling chart:

Average waiting time: (3 + 16 + 9 + 0)/4 = 7
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Estimating the Length of Next CPU Burst

Can be done by using the length of previous CPU bursts, using
exponential averaging
1 tn = actual length of nth CPU burst
2 τn+1 = predicted value for the next CPU burst
3 α, 0 ≤ α ≤
4 Define: τn+1 = αtn + (1− α)τn
Example: α = 0.5
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Preemptive Shortest-Job-First (PSJF) Scheduling

PSJF = shortest-remaining-time-first

Example:
Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

SJF scheduling chart:

Average waiting time:
[(10− 1) + (1− 1) + (17− 2) + (5− 3)]/4 = 6.5
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Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority
(smallest integer ≡ highest priority)

Preemptive
Non-preemptive

SJF is a priority scheduling where priority is the predicted next
CPU burst time

Problem: Starvation - low priority processes may never execute

Solution: Aging- as time progresses increase the priority of the
process
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Round Robin (RR)

Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.

Overhead

q large ⇒ FIFO ⇒ low number of context switches
q small ⇒ many context switches ⇒ q must be large with respect
to context switch
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Round Robin II

Example: RR with TQ 4
Process Burst Time

P1 24

P2 3

P3 3

Gantt chart:

Typically, higher average turnaround than SJF, but better
response
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Time Quantum and Context Switch Time
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Turnaround Time Varies With The Time Quantum
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Multilevel Queue

Ready queue is partitioned into separate queues:
(e.g., foreground=interactive) and background=batch)

Each queue has its own scheduling algorithm

foreground - RR
background - FCFS

Scheduling must be done between the queues

Fixed priority scheduling; (i.e., serve all from foreground then from
background) ⇒ Possibility of starvation
Time slice - each queue gets a certain amount of CPU time which it
can schedule amongst its processes; i.e., 80% RR, 20% to FCFS
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Multilevel Queue II

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Management 65/81



Process Concept MT Programming Process Scheduling Concept Criteria Policies MP Sched Examples Evaluation

Round Robin: I/O vs. CPU-Bound Processes

An I/O bound process uses the CPU for a time less than the
time quantum and then is blocked waiting for I/O

A CPU-bound process can run for all its time slice and is put
back into the ready queue (thus getting in front of blocked
processes)

Ü Virtual Round Robin

When an I/O has completed, the blocked process is moved to an
auxiliary queue which gets preference over the main ready queue
A process dispatched from the auxiliary queue runs no longer than
the basic time quantum minus the time spent running since it was
selected from the ready queue
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Virtual Round Robin
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Multilevel Feedback (MLFB) Queue

A process can move between the various queues

Aging can be implemented this way

Multilevel-feedback-queue scheduler defined by the following
parameters:

number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process
method used to determine which queue a process will enter when
that process needs service
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Multilevel Feedback (MLFB) Queue II

Example with three queues:

Q0 - RR time quantum 8 ms

Q1 - RR time quantum 16 ms

Q2 - FCFS

Scheduling:

A new job enters queue Q0 which is served RR. When it gains CPU,
job receives 8 milliseconds. If it does not finish in 8 milliseconds, job
is moved to queue Q1.
At Q1 job is again served RR and receives 16 additional milliseconds.
If it still does not complete, it is preempted and moved to queue Q2.
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Lottery Scheduling

Give each process some lottery tickets

On each time slice randomly pick a ticket (lottery)

Ticket owner gets CPU for one time slice

Scheduling behavior is dependent on number of tickets a process
owns

How to assign tickets?
To approximate SRTF, short runners get more, long runners get
fewer
To avoid starvation, every job gets at least one ticket (everyone
makes progress)

Advantage over strict priority scheduling: behaves gracefully as
load changes

Adding or deleting a process affects all others proportionally,
independent of how many tickets each one possesses
Processes can hand over tickets to other procs, e.g. a client to a
server (called ticket donation)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Management 70/81



Process Concept MT Programming Process Scheduling Concept Criteria Policies MP Sched Examples Evaluation

Multiple-Processor Scheduling

CPU schedulingis more complex when multiple CPUs are
available

Homogeneous processors within a multiprocessor

Asymmetric multiprocessing - only one processor accesses the
system data structures, alleviating the need for data sharing

Symmetric multiprocessing (SMP) - each processor is
self-scheduling, all processes in common ready queue, or each
has its own private queue of ready processes

Processor affinity - process has affinity for processor on which it
is currently running

soft affinity
hard affinity
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NUMA Scheduling
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SMT und Multi-Core Scheduling

Recent trend to place multiple processor cores on same physical
chip

Faster and consume less power

Multiple threads per core (SMT) also growing

Takes advantage of memory stall to make progress on another
thread while memory retrieve happens
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Solaris Scheduling
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Solaris TS Scheduler

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Management 75/81



Process Concept MT Programming Process Scheduling Concept Criteria Policies MP Sched Examples Evaluation

Linux O(1) Scheduler
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Linux O(1) Task Arrays

see “Understanding the Linux 2.6.8.1 CPU Scheduler” by Josh
Aas, Feb. 2005
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Deterministic Modelling

Predetermined Workload

Deterministic scheduling algorithm

Ü Formula or concrete numbers that evaluate the performance of a
scheduling policy for that workload
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Queueing Models

Based on the foundations of Queueing Theory

System is modelled as a network of queues

Activities (CPU and I/O) are modelled with distribution of
arrival time, execution time, . . . (often unrealistic)

Queueing-network analysis determines the average throughput,
utilization, queue length, waiting time, . . .

Little’s formula: n = λ ∗W (valid for all policies and
distributions)

n: average queue length
λ: average arrival rate
W : average waiting time per process in the queue
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Simulations
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Implementation and Measurement

Implementation with “real” operating system sources

Measurement with “typical” workload on “real” hardware

Ü Minor changes in the execution environment can have dramatic
impact on the outcome of measurements
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